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CHAPTER I

Introduction

If you have ever given up on a nuclear criticality calculation and terminated it

because it took so long to converge, you might �nd this thesis of interest. We develop

three methods for improving the �ssion source convergence in nuclear criticality

calculations for physical systems with high dominance ratios for which convergence

is slow. The Fission Matrix Acceleration Method and the Fission Di�usion Synthetic

Acceleration (FDSA) Method are acceleration methods that speed �ssion source

convergence for both Monte Carlo and deterministic methods. The third method is

a hybrid Monte Carlo method that also converges for di�cult problems where the

unaccelerated Monte Carlo method fails.

1.1 Criticality Calculations

The criticality of a system containing �ssionable material is described by its

multiplication factor. The multiplication factor is the ratio of the number of neutrons

in one generation to the number of neutrons in the previous generation. A generation

is essentially the lifetime of a neutron. For �nite systems, the multiplication factor

is denoted as keffective, or keff . When a system is critical, it sustains a steady-state

chain reaction of nuclear �ssioning, and keff=1. The average neutron population

1
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in a critical system stays constant in time. A subcritical system has keff<1 and

the neutron population dies o� in time. The neutron population in a supercritical

system, where keff>1, grows without bound in time [Dud76].

Knowledge of keff is necessary when designing nuclear reactors and handling

nuclear waste. With reactor design at a lull and waste production not, the latter

has become a dominant application for criticality calculations, or, more appropri-

ately, criticality safety calculations. Criticality has been a concern since the �rst

criticality experiments. Experiments are the best benchmarks for criticality safety,

but they are costly and speci�c only to the particular geometry of the experiment.

Hand calculations have been used for arrays of �ssionable material [Tho73]. How-

ever, numerical computer methods are used almost exclusively for criticality cal-

culations at this time. Deterministic and Monte Carlo methods are both used.

However, because of complicated geometries and increasing computer power, Monte

Carlo methods are emerging as the tool of choice for criticality safety engineers. In

the United States, three production Monte Carlo computer codes are widely used:

MCNPTM 1 [Bri93][For94] from Los Alamos National Laboratory, KENO [Bow95]

from Oak Ridge National Laboratory, and MONK from AEA Technology in the

United Kingdom [Smi95]. VIM [Blo95] is used extensively at Argonne National

Laboratory. We have implemented one of our new methods, the Fission Matrix

Acceleration Method, in MCNP.

1.2 Di�culties with Criticality Calculations

For some systems, criticality calculations take an enormous amount of time to

converge. Both deterministic and Monte Carlo criticality calculations are based

1MCNP is a trademark of the Regents of the University of California, Los Alamos National

Laboratory
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on the source (or power) iteration method. A deterministic calculation is �nished

upon source convergence, but a Monte Carlo calculation begins accumulating useful

random variable data only after the (�ssion) source is converged. The error in the

source iteration method decreases with each iteration, where the speed of the decrease

is dictated by the dominance ratio. The dominance ratio is the ratio of the second

eigenvalue to the �rst, or dominant, eigenvalue (keff ). If the dominance ratio is near

unity, the source iteration error will decrease slowly, and thus convergence to the

dominant eigenmode (the converged �ssion source) is slow. Two types of systems

that have high dominance ratios (near unity) are large thermal reactors and arrays

of nuclear waste components. A system's high dominance ratio is synonymous with

weak neutron communication between distant regions of the system.

Slow source convergence is less of a problem when the initial �ssion source guess

is very close to the converged �ssion source. However, sometimes knowledge of the

solution beforehand is evasive. Sometimes the typically available initial source shapes

(at, or uniform, over the �ssionable regions, or maybe a cosine shape) in a produc-

tion code are very di�erent from the converged source shape. So, in practice, slow

source convergence can be quite troublesome. In fact, for some di�cult problems,

Monte Carlo may never converge.

1.3 History of the Fission Matrix

The �ssion matrix is mainly associated with Monte Carlo criticality calculations,

but it also has applications in deterministic criticality calculations. The (i; j)th

element of the �ssion matrix is the probability that a �ssion source neutron born

in region j of the system causes the subsequent birth of a �ssion source neutron in

region i. The �ssion matrix may be somewhat tediously estimated from a set of
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deterministic calculations.

The �ssion matrix may also be estimated in a Monte Carlo calculation by keeping

track of what happens to the Monte Carlo{simulated neutrons. Each element (i; j)

of the �ssion matrix is the number of neutrons produced in region i due to neutrons

starting in region j divided by the number of neutrons starting in region j. Because

the �ssion matrix elements are ratios (and probabilities), they may be closer to truth

than the Monte Carlo �ssion source. For example, suppose the source in region j

is lower than its converged value. Both the numerators and denominators in the

�ssion matrix elements associated with region j will be lower than their converged

values. The errors tend to cancel out in the �ssion matrix elements, and are more

representative of the converged solution. Thus, the eigenvector of the �ssion matrix

tends to converge faster than the Monte Carlo �ssion source. Note that, because it is

spatially discretized, the �ssion matrix eigenvector does not converge exactly to the

spatially continuous Monte Carlo �ssion source. The eigenvector has a second{order

spatial truncation error [Kap58][Car75].

The idea of using the �ssion matrix as a separate and faster calculation was

developed by Morton [Mor56] and Kaplan [Kap58]. Morrison, Mihalczo, and Irving

of Oak Ridge National Laboratory implemented a �ssion matrix calculation into the

Monte Carlo code O5R [Mor66]. They used the number of iterations required to

converge the �ssion matrix eigenvector as a guide to know how many Monte Carlo

iterations it would take the regular Monte Carlo to converge. Both Mihalczo [Mih67]

and Mendelson [Men68] used the �ssion matrix calculations in calculations for real

systems. The Oak Ridge code, KENO, has the capability of performing �ssion matrix

calculations. Unfortunately, hardly anyone uses this option [Pet92]. We speculate

that the major reason this KENO option is largely unused is the user community's
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lack of familiarity with the �ssion matrix.

Both Kaplan [Kap58] and Kalos, et al. [Gre68] suggested using the �ssion matrix

eigenvector to adjust the regular Monte Carlo �ssion source distribution through vari-

ance reduction techniques (Splitting and Russian roulette). Carter and McCormick

[Car69] presented a method in which the regular Monte Carlo �ssion source dis-

tribution is adjusted by the ratio of successive �ssion matrix eigenvectors. They

demonstrated the potential acceleration by performing calculations that used dif-

fusion methods to simulate Monte Carlo. Kadontani, et al. [Kad91] attempted

accelerating the Monte Carlo �ssion source by setting it equal to the �ssion matrix

eigenvector at each iteration. These attempts met with limited success.

The big culprit behind these failures of Monte Carlo source acceleration methods

is the statistical noise inherent in the Monte Carlo algorithm. The acceleration

attempts may be carried over from successful deterministicmethods, or they may just

be inherently deterministic, but whatever the reason, they cannot handle statistical

noise. However, Swaja [Swa72] successfully accelerated Monte Carlo �ssion source

convergence with Source Extrapolation, a deterministic acceleration method. He

�ltered the statistical noise by a Kalman �lter. Embedded in the Kalman �ltering

process was the �ssion matrix to account for the dynamic state of the converging

source.

We consider a numerical acceleration method as a method that converges to a

solution equivalent to the unaccelerated solution, only faster. Since the �ssion ma-

trix is estimated in discrete space, it has a truncation error. Therefore, unless the

�ssion matrix has the same spatial discretization as the regular calculation, a direct

adjustment of the regular �ssion source to the �ssion matrix eigenvector is not an

acceleration method. (Depending on how the method of Kalos, et al. [Gre68] is
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implemented, it may or may not be an acceleration method.) Monte Carlo calcula-

tions are usually performed in continuous space and the �ssion matrix is estimated

in �nite discretized space.

The Fission Matrix Acceleration method derived in this thesis converges to the

regular, unaccelerated Monte Carlo �ssion source. It uses the �ssion matrix as a low-

order operator to determine an additive correction to the �ssion source. However, it

does require �ltering the statistical noise.

1.4 The New Methods and Testing Their Feasibility

We develop three new methods that have not been tried before. The Fission Ma-

trix Acceleration method and the Fission Di�usion Synthetic Acceleration method

are accelerated versions of the regular, unaccelerated Source Iteration method. Each

iteration contains an additional step in which a low-order approximation to an exact

additive correction is applied to the �ssion source. Although each accelerated iter-

ation entails more work, the method accelerates the source convergence such that

signi�cantly fewer iterations are required for convergence. The low-order approxi-

mations to the exact corrections are what di�erentiate the two methods: the �ssion

matrix and the di�usion approximation. The third method, the Hybrid Monte Carlo

method, is not an acceleration method, but rather a modi�ed Monte Carlo source

iteration method. The source at each iteration is sampled not from the Monte Carlo

tracking, but from the solution of an elliptic equation, some of whose coe�cients are

determined by the Monte Carlo simulation.

We determine the feasibility of the new methods by testing them on idealized

problems. The problems are far from reality, but nevertheless, they contain enough

\truth" to determine the merit and behavior of the methods.
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Veri�cation of the testbed's validity is found by implementing the Fission Matrix

Acceleration method in the production code MCNP. Its behavior for a real, three-

dimensional, continuous-energy problem is the same as its behavior in the idealized

problems.

In a valid testbed then, we demonstrate that these methods are successful and

warrant further adaptation to real problems. Projected speedups will reduce compu-

tational time investments, thus permitting better evaluation of criticality scenarios.

1.5 Thesis Synopsis

We present an overview of the thesis.

Chapter II: Criticality Calculations

In Chapter II we begin with the general neutron transport equation and derive

the analytic �xed-source and the analytic criticality equations for one energy group,

isotropic scattering, and one-dimensional slab geometry. We also derive the adjoint

transport equation. We derive and present the numerical method of solution for

deterministic and Monte Carlo methods and the di�culties they have with high

dominance ratio problems. Lastly, we describe the �ssion matrix and how it is

estimated.

Chapter III: Fourier Analysis and Damped Acceleration

The acceleration methods we derive produce an additive correction for the �s-

sion source. We will �nd that sometimes the correction needs to be scaled back,

or damped, because applying the entire correction results in instability or highly

oscillatory behavior. Usually the oscillatory behavior is found in Monte Carlo cal-

culations and is due to the statistical noise. Sometimes deterministic acceleration
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has to be scaled back if the system and solution are extremely heterogeneous or

contain severe transport e�ects. We do not have a direct theoretical justi�cation

for this damping. However, we gain some indirect theoretical insight by looking

at Di�usion Synthetic Acceleration (DSA), an acceleration method for �xed-source

calculations. We �nd, through a Fourier analysis, that when the acceleration equa-

tion is discretized inconsistently with the transport equation, damping is required

for certain mesh sizes in order to inhibit instability. We note that, in methods for

accelerating the Monte Carlo �ssion source convergence, the acceleration equations

are inherently inconsistently discretized with Monte Carlo. Fission source conver-

gence acceleration methods are not amenable to this type of Fourier analysis, so we

use the inconsistently-discretized �xed-source analysis as a foundation for damping

�ssion source convergence acceleration.

Chapter IV: Experimental Fourier Analysis Tool

This shortest chapter in this thesis explains the tool we use to measure the conver-

gence of a �ssion source. The experimental Fourier analysis tool is used throughout

the thesis to gauge the convergence of various modes of the �ssion source.

Chapter V: Di�usion-Simulated Monte Carlo Calculations

In Chapter V we present Carter and McCormick's acceleration method [Car69]

and propose an improvement to it. All neutron transport in this chapter is simulated

by di�usion calculations.

Chapter VI: Fission Matrix Acceleration Method

We develop the Fission Matrix Acceleration method in Chapter VI. We derive

it and explain the statistical �ltering necessary for accelerating Monte Carlo. We
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present the three one-dimensional slab geometry test problems that we use through-

out the thesis: a homogeneous slab, a uniform lattice, and a one-dimensional model

of the \keff of the world" problem. We present both deterministic and Monte Carlo

acceleration results.

We also extend the Fission Matrix Acceleration method to the production Monte

Carlo code MCNP and demonstrate the acceleration for the real, three-dimensional,

continuous energy- and space-dependent \keff of the world" problem.

Chapter VII: Fission Di�usion Synthetic Acceleration

Chapter VII contains the derivation of the Fission Di�usion Synthetic Accel-

eration (FDSA) method and the results for both deterministic and Monte Carlo

criticality calculations for the one-dimensional problems.

Chapter VIII: A Hybrid Monte Carlo Method for Improved Source Con-

vergence

Sometimes Monte Carlo does not converge to the correct �ssion source. An ex-

ample of a system where this is the case is the uniform lattice problem. Since a

true acceleration method converges to the unaccelerated solution, the method can-

not overcome inherent Monte Carlo de�ciencies. We present a hybrid Monte Carlo

method in Chapter VIII that converges when regular, or accelerated, Monte Carlo

cannot. This method also results in reduced statistical noise.

Chapter IX: Summary, Conclusions, and a Look Ahead

In Chapter IX we summarize, draw conclusions, and list some activities for future

work.



CHAPTER II

Criticality Calculations

This thesis investigates the acceleration of Monte Carlo (and, to a lesser extent,

deterministic) nuclear criticality calculations. Criticality calculations, due to the

presence of �ssioning, are an extension of �xed-source calculations. We �rst present

the �xed-source neutron transport equation and sketch the derivation of its monoen-

ergetic, isotropic scattering, one-dimensional slab geometry form. We then introduce

�ssioning to obtain the criticality form of the neutron transport equation that pro-

vides the groundwork for much of this thesis. We also present the di�usion equation,

an approximation to the transport equation. We use the di�usion equation and its

associated approximations to develop and study acceleration methods.

2.1 Analytic Equations

2.1.1 Analytic Fixed Source Neutron Transport Equation

A �xed-source calculation solves the neutron transport equation, which is a lin-

earized version of the Boltzmann equation [Cas67][Dud76]. The neutron transport

equation, for both �xed-source and criticality calculations, is a neutron balance equa-

tion. In general geometry, the time-independent �xed-source transport equation is

[Lew84],

10
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 � r (r; E;
) + �t(r; E) (r; E;
) =

Z Z
�s(r;


0

�
; E 0

! E) (r; E 0;
0) d
0 dE0 +
1

4�
Q(r; E) ; (2.1)

where


 = direction of particle ; (2.2)

r = position of particle ; (2.3)

E = energy of particle ; (2.4)

�t(r; E) = total cross section (2.5)

= probable number of interactions a

particle at r with energy E undergoes

per unit path length ; (2.6)

�s(r;

0

�
; E0

! E) d
 dE = probability per unit path length that a

particle at r with energy E0 traveling in

direction 
0 scatters into dE about E

and d
 about 
 ; (2.7)

1

4�
Q(r; E) = external (independent of  ) source

of particles ; (2.8)

 (r; E;
) = angular ux (2.9)

= vn(r; E;
) : (2.10)

Here

v = particle speed ; (2.11)

n(r; E;
) = particle density distribution ; (2.12)

and

n(r; E;
) dr dE d
 = expected number of particles in dr about r

with energy dE about E and traveling in

direction d
 about 
 : (2.13)
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In this thesis, we make three simpli�cations to the neutron transport equation.

First, we consider only monoenergetic (or, one-group) problems, thereby eliminating

the dependence on E. Second, we consider only isotropic scattering. All angles are

equiprobable in isotropic scattering, so the dependence of �s on angle is eliminated.

Third, our analysis is restricted to one-dimensional slab geometry. These are harsh

restrictions and deviate greatly from reality, but they provide an appropriate plat-

form for methods development. If a method is successful under these simpli�cations,

extensions of it may be successful for higher-dimensioned, more complicated prob-

lems. In fact, we have successfully implemented the Fission Matrix Acceleration

method in MCNP and applied it to a three-dimensional, continuous energy problem.

(See Section 6.6.) The characteristics of the simpli�ed, one-dimensional acceleration

method extend to the more complicated three-dimensional method.

Let us express the direction vector, 
, in spherical coordinates. We consider a

right-hand coordinate system with orthogonal unit directions (i; j;k) in the (x; y; z)

directions. Then the direction vector, 
, emanating from the origin is


 = 
x i+ 
y j+ 
z k (2.14)

= sin � cos� i+ sin � sin� j+ cos � k (2.15)

=
q
1� �2 cos � i+

q
1� �2 sin � j+ � k ; (2.16)

where

� = angle between 
 and k ; (2.17)

� = azimuthal angle (2.18)

= angle between i and the projection of 
 onto the xy plane ; (2.19)

� = cos � : (2.20)
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Then, for any function f(
)=f(�; �), we have that

Z
4�
f(
) d
 =

Z
2�

�=0

Z
1

�=�1
f(�; �) d� d� : (2.21)

An explicit expression for the monoenergetic scattering cross section is that of linearly

anisotropic scattering,

�s(r;

0

�
) =
1

4�
(�s0 + 3
 �
0�s1) ; (2.22)

where, for isotropic scattering, �s1 = 0.

In one-dimensional slab geometry, there is no dependence upon y or z or the

azimuthal angle �. Thus, by renormalizing  ,

 (x; �) 
Z
2�

�=0
 (x; �) d� = 2� (x; �) ; (2.23)

we obtain the monoenergetic, one-dimensional slab geometry transport equation for

isotropic scattering:

�
@

@x
 (x; �) + �t(x) (x; �) =

1

2

Z
1

�1

�s0(x) (x; �
0) d�0 +

Q(x)

2
; (2.24)

where

�s0(x) =
Z
1

�1

�s0(x; �
0) d�0 : (2.25)

For a slab of width L, 0� x� L, the boundary conditions specify  for incoming

directions,

 (0; �) =  +(�) ; � > 0 ; (2.26)

 (L; �) =  �(�) ; � < 0 : (2.27)

2.1.2 Analytic Criticality Neutron Transport Equation

We obtain the one-group analytic criticality neutron transport equation for

isotropic scattering and one-dimensional slab geometry by introducing a �ssion term
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to Equation 2.24:

�
@

@x
 (x; �) + �t(x) (x; �) =

1

2
�s(x)

Z
1

�1

 (x; �0) d�0 +
1

2

��f (x)

k

Z
1

�1

 (x; �0) d�0 ; (2.28)

where

�f (x) = �ssion cross section (2.29)

= probability per unit path length that a particle at x

undergoes a �ssion ; (2.30)

� = average number of neutrons produced in a �ssion event ; (2.31)

k = keff = keffective (2.32)

= the multiplication factor ; (2.33)

For simplicity, we denote �s0 as �s. For our criticality calculations, we only consider

sources from �ssion, no external (either interior or incident) sources. Therefore, we

have vacuum boundary conditions:

 (0; �) = 0 ; � > 0 ; (2.34)

 (L; �) = 0 ; � < 0 : (2.35)

Since the source depends on  , Equation 2.28 de�nes an eigenvalue problem, where

k=keff is the dominant eigenvalue. k can be viewed as the number by which �

needs to be divided to make the system model critical, that is, where a nuclear

chain reaction is just sustainable. It follows that, for k > 1, the system model is

supercritical and the neutron population would grow in time. For k < 1, the system

model is subcritical and the neutron population would die out.

2.1.3 Analytic Di�usion Equation

Solving the transport equation is typically di�cult. Employing the di�usion ap-

proximation in the transport equation yields the di�usion equation, which is simpler
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to solve. The di�usion approximation rests on the assumption that the angular ux

is linear in angle:

 (x; �) �
1

2
(�0(x) + 3��1(x)) : (2.36)

Here we have de�ned

�n(x) �
Z
1

�1

�n (x; �)d� ; n = 0; 1 ; (2.37)

where �0(x) is the scalar ux, �(x). Immediately, we substitute the scalar ux into

Equation 2.28 and obtain

�
@

@x
 (x; �) + �t(x) (x; �) =

1

2
�s(x)�(x) +

1

2

��f (x)

k
�(x) : (2.38)

Now, we take the zeroth angular moment of Equation 2.38 by operating on it by

Z
1

�1

(�) d� (2.39)

and obtain

@

@x
�1(x) + �t(x)�0(x) = �s(x)�0(x) +

��f (x)

k
�0(x) : (2.40)

Operating on Equation 2.38 by

Z
1

�1

�(�) d� ; (2.41)

we obtain its �rst angular moment,

@

@x

Z
1

�1

�2 (x; �) d�+ �t(x)�1(x) = 0 : (2.42)

Substituting the linear approximation of  , Equation 2.36, into Equation 2.42, we

obtain

1

3

@

@x
�0(x) + �t(x)�1(x) = 0 ; (2.43)
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from which we obtain Fick's Law,

�1(x) = �
1

3�t(x)

@

@x
�0(x) : (2.44)

Substituting Equation 2.44 into Equation 2.40 and using the identity that the total

cross section is the sum of the scattering and absorption cross sections,

�t(x) = �s(x) + �a(x) ; (2.45)

we obtain the di�usion equation:

�
@

@x

1

3�t(x)

@

@x
�0(x) + �a(x)�0(x) =

��f (x)

k
�0(x) : (2.46)

The boundary conditions are obtained by utilizing the linear approximation,

Equation 2.36, and the �rst moment equation, Equation 2.42, and integrating over

incoming directions. At the left side,

0 =
Z
1

0

� (0; �) d� (2.47)

=
1

2
�0(0)

Z
1

0

�d� +
3

2
�1(0)

Z
1

0

�2 d� (2.48)

=
1

4
�0(0) +

1

2
�1(0) (2.49)

0 = �0(0) �
2

3�t(0)

@

@x
�0(0) : (2.50)

Similarly, on the right side,

0 =
Z
0

�1

� (L; �) d� (2.51)

=
1

2
�0(L)

Z
0

�1

�d� +
3

2
�1(L)

Z
0

�1

�2 d� (2.52)

= �
1

4
�0(L) +

1

2
�1(L) (2.53)

0 = �0(L) +
2

3�t(L)

@

@x
�0(L) : (2.54)

These boundary conditions are commonly called the Marshak boundary conditions

[Bel70].
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Equation 2.46 is the di�usion equation. The di�usion equation and its associated

boundary conditions are obtained from the neutron transport equation by assuming

that the angular ux is linear in angle. The transport equation is a hyperbolic

equation, but the di�usion equation is an elliptic equation. Hyperbolic equations

are associated with wave propagation, giving rise to distinctly di�erent domains of

dependence and zones of inuence for a point in phase phase. Elliptic equations

are associated with di�usion processes where, for a phase space point, the domain

of dependence is equal to the zone of inuence [Hir88]. For example, a localized

perturbation in a �nite system would be propagated to the rest of the system in

�nite time by the transport equation, while the di�usion equation would di�use the

e�ects across the entire system instantaneously.

2.1.4 Analytic Adjoint Transport Equation

The solution of the adjoint transport equation is a valuable tool. Suppose a

system of volume V consists of a volume source of neutrons in a nonmultiplying

(non�ssioning) medium and a detector located some distance away from the source,

as shown in Figure 2.1. In the world of Monte Carlo, where individual particles are

simulated, the adjoint calculation is referred to as \running the particles backward

from the detector." The adjoint solution is the system-wide importance at each point

in phase space for a particle to reach the detector [Bel70]. The three main uses for

the adjoint solution are perturbation calculations, Monte Carlo biasing [Lew84], and

variational calculations [Bel70]. We briey present the adjoint equation because we

�nd it is necessary in our acceleration methods.

Given an operator R and the functions  (x; �) and  �(x; �) that satisfy the

necessary boundary and continuity conditions, the adjoint operator R� is de�ned by
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detector

source

V

Figure 2.1: Three-dimensional �xed-source system.

the following equation [Lew84][Bel70],

( �;R ) = ( ;R� �) ; (2.55)

where (�; �) is the inner product,

(�; �) =
Z Z

(�)(�) d� dx : (2.56)

Suppose R is the criticality transport operator from Equation 2.28:

R =M�
1

k
N ; (2.57)

where

M (x; �) = �
@

@x
 (x; �) + �t(x) (x; �)�

1

2
�s(x)

Z
1

�1

 (x; �0) d�0 ; (2.58)

and

N (x; �) =
1

2
��f (x)

Z
1

�1

 (x; �0) d�0 : (2.59)

Then the criticality transport equation is

R (x; �) = 0 ; (2.60)
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which is called the forward problem in the adjoint context. Considering the �xed-

source part of R �rst, the adjoint of M is de�ned by

( �;M ) = ( ;M� �) : (2.61)

Multiplying M by the adjoint angular ux,  �, and taking the inner product, the

form of M� is found as [Lew84]

M� �(x; �) = ��
@

@x
 �(x; �) + �t(x) 

�(x; �)�
1

2
�s(x)

Z
1

�1

 �(x; �0) d�0 : (2.62)

The di�erence between the forward operator M and its adjoint, M�, is a negative

sign on the streaming term. Similarly, the adjoint of the �ssion operator N is de�ned

by

( �;N ) = ( ;N� �) ; (2.63)

where

N� �(x; �) =
1

2
��f (x)

Z
1

�1

 �(x; �0) d�0 : (2.64)

Since N=N�, N is self-adjoint. (When energy dependence is taken into account, the

�ssion operator is not self-adjoint.) The adjoint criticality transport operator is

R� =M�

�
1

k�
N� ; (2.65)

Utilizing Equations 2.61 and 2.63, we see that, for Equation 2.55 to hold, we must

have �
1

k
�

1

k�

�
( �;N ) = 0 : (2.66)

Since the inner product is not zero for positive  and  �, the forward and adjoint

eigenvalues must be equal,

k = k� : (2.67)
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We will discover that we need the solution of the adjoint di�usion equation for the

Fission Di�usion Synthetic Acceleration method. Without energy dependence, the

di�usion operator in Equation 2.46 is self-adjoint. For a system with a non-reentrant

vacuum boundary, the adjoint boundary condition is zero for outgoing uxes. This

boundary condition coincides with the physical interpretation of the adjoint ux as

the neutron importance. Neutrons escaping the system have zero chance of causing

a �ssion, therefore they have zero importance.

2.2 Numerical Methods for Solving the Neutron Transport

Equation

Analytically solving the transport and di�usion equations is possible only for

simple, idealized systems. Therefore, people resort to numerical, or computational,

methods to solve the equations on a computer. Computational methods are either

deterministic or stochastic.

Deterministic methods typically require discretizing the equations in every inde-

pendent variable and using �nite di�erencing methods to approximate derivatives

of functions. An alternative to �nite di�erencing is the �nite element method, but

we will not consider that in this thesis. In neutron transport, a popular way to

discretize the angular variable is the discrete-ordinates, or SN , method, where the

Gauss-Legendre quadrature set is used to approximate integrals over angle. The

main source of error in a deterministic method is the spatial discretization. For

�nite spatial cells, the discretized equation di�ers from the analytic equation by a

truncation error that should disappear as the spatial cells go to zero.

The Monte Carlo method is a stochastic method. Instead of solving a discretized

equation, the Monte Carlo method simulates actual particles. Using pseudo-random
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numbers, all events that a particle undergoes are sampled from known probability

density functions. The location, energy, and angle of a source particle are sampled

from a source distribution. The distance the particle travels to a collision, whether it

is absorbed or scatters, and its properties after a scatter are all sampled according to

probability density functions. Since Monte Carlo can handle the energy, spatial, and

angular variables continuously, it does not su�er from truncation errors. However,

since results are obtained by averaging the individual results from many particles,

all Monte Carlo solutions have statistical error.

The advantage of the Monte Carlo method is that it is able to model continuous

energy, space, and angle in irregular, complicated geometries. The advantage of

deterministic methods over Monte Carlo is that they have no statistical errors.

Figure 2.2 qualitatively shows howMonte Carlo and SN compare. The SN method

considers an in�nite number of particles in a �nitely resolved system. Monte Carlo

considers a �nite number of particles in an in�nitely resolved system. The \degree of

variable resolution" axis could also be, in some sense, \number of collisions." Monte

Carlo particles either explicitly or probabilistically experience all of their collisions

from birth to death. However, in a discrete-ordinates calculation, the nth iteration

on the scattering source produces the nth-collided ux.

2.2.1 Deterministic Methods

By discretizing the independent variables, the integro-di�erential transport equa-

tion is converted to a system of equations amenable to solving on a computer.

Angular Discretization

For discrete-ordinates, or SN , the angular variable, �, is divided into bins such

that particles only travel in discrete angles. The SN Gauss-Legendre quadrature set
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degree of variable
       resolution

number of
 particles

Monte
 Carlo

SN

Figure 2.2: A qualitative comparison of discrete-ordinates SN and Monte Carlo.

de�nes the discrete angle, �m, and weight, wm, in each bin. (An alternative to SN

quadrature sets is the spherical harmonics, or Legendre polynomial approximations

(PN ). The SN and PN�1 equations are equivalent in one-dimensional slab geometry

[Lew84].) Integrals over angle are approximated in SN by summations over the

quadrature set: Z 1

�1

�d� �
NX

m=1

�mwm : (2.68)

In one-dimensional geometries, even-order quadrature sets are almost exclusively

employed. The even order quadrature sets are symmetric about, but do not include

�=0. They exactly integrate polynomials up to order 2N{1 [Bel70]. We use the

convention that the weights sum to 2:

NX
m=1

wm = 2 : (2.69)



23

Thus, the angular ux is converted from a continuous function to a discrete vector

whose N elements at a particular point in space (and energy, if considered) are the

angular ux in each discrete angle. So, for � � �m,

 (x; �) �  m(x) �  (x; �m) : (2.70)

The scalar ux, for instance, is approximated as

�(x) =

Z 1

�1

 (x; �) d� (2.71)

�

NX
m=1

 m(x)wm : (2.72)

Spatial Discretization

Spatially, the one-dimensional slab of width L is discretized by dividing it into

J cells, as shown in Figure 2.3. The interior cell edges are speci�ed by xj+1=2,

1/ 2
x 

1
x 2x 

J 
x j x 

j+1/2x j-1/2x 
J+1/2

x 

x = 0 x = L
j h 

Figure 2.3: Discretized one-dimensional slab geometry.

1 � j � J -1. The left boundary is denoted by x1=2 and the right boundary by

xJ+1=2. The cells have width hj,

hj = xj+1=2 � xj�1=2 ; (2.73)

with the cell center, xj, located at

xj =
1

2

�
xj+1=2 + xj�1=2

�
: (2.74)
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Cross sections and any external �xed-sources in the interior of the system are to be

constant across a cell. The spatially discretized angular ux is assumed to reside on

the cell edges. The spatially analytic SN transport equation for a particular direction

m is

�m
@

@x
 m(x) + �t(x) m(x) =

1

2
�s(x)

NX
n=1

 n(x)wn +
1

2

��f (x)

k

NX
n=1

 n(x)wn : (2.75)

Integrating Equation 2.75 over the jth cell or, speci�cally, operating on it by

1

hj

Z xj+1=2

xj�1=2

(�) dx ; (2.76)

we obtain

�m

hj

�
 m;j+1=2 �  m;j�1=2

�
+ �t;j m;j

=
1

2
�s;j

NX
n=1

 n;j wn +
1

2

��f;j

k

NX
n=1

 n;j wn ; (2.77)

where 1� m � N , 1 � j � J , and the cell-averaged angular ux for direction m is

 m;j =
1

hj

Z xj+1=2

xj�1=2

 m(x) dx : (2.78)

Di�erencing Scheme

Equation 2.77, together with speci�ed incoming boundary conditions, consti-

tutes JN+N equations in 2JN+N unknowns ((J+1)N cell-edge uxes and JN

cell-average uxes). The required extra JN equations are auxiliary equations that

approximate Equation 2.78 and relate the cell-average ux to the cell-edge ux. A

common di�erencing scheme for the auxiliary equations, and one that we use in this

thesis, is the Diamond Di�erencing Scheme,

 m;j =
1

2

�
 m;j�1=2 +  m;j+1=2

�
: (2.79)
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The Diamond Di�erencing scheme is second order accurate, but it produces negative

uxes in some cases, and attempts to alleviate the negativity may cause inaccuracies.

There are several other di�erencing schemes. For example, one new di�erencing

scheme that is positive and very accurate is a nonlinear characteristic scheme [Wal95].

Order of Accuracy

In Equation 2.77, the derivative of the angular ux is represented as a �nite

di�erence. The �nite di�erence method is based on the de�nition of the derivative

of  at x:

d 

dx
= lim
4x!0

 (x+4x)�  (x)

4x
: (2.80)

Representing a derivative as a �nite di�erence is an approximation. The order of the

accuracy of the approximation is determined by the power n, when the truncation

error goes to zero as (4x)n [Hir88].

We use Taylor series expansions to show that both the Diamond Di�erencing

Scheme and the centrally di�erenced approximation to the �rst derivative of the ux

in Equation 2.77 are second order accurate. First, the Diamond Di�erence scheme,

for a particular angle m, is shown to be second order accurate as follows:

 j =
1

2

�
 j�1=2 +  j+1=2

�
(2.81)

=
1

2

 
 (xj)�

d (xj)

dx

h

2
+
d2 (xj)

dx2
h2

8
+O(h3)

+ (xj) +
d (xj)

dx

h

2
+
d2 (xj)

dx2
h2

8
+O(h3)

!
(2.82)

=  (xj) +O(h
2) ; (2.83)

where O(hn) represents terms of, at most, order hn. Second, the centrally di�erenced

�rst derivative of the angular ux is, expanded in Taylor series, also shown to be
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second order accurate:

d j

dx
=

 j+1=2 �  j�1=2

h
(2.84)

=
1

h

 
 (xj) +

d (xj)

dx

h

2
+
d2 (xj)

dx2
h2

8
+O(h3)

� (xj) +
d (xj)

dx

h

2
�
d2 (xj)

dx2
h2

8
+O(h3)

!
(2.85)

=
d (xj)

dx
+O(h2) : (2.86)

Fixed-Source Method of Solution

The method of solution for �xed-source, one-dimensional slab geometries is sweep-

ing left to right, considering the left-going angular uxes separately from the right-

going angular uxes. Equation 2.77 becomes a �xed-source problem if the entire

�ssion source is instead a �xed-source, Qj, that is constant within each cell:

�m

hj

�
 m;j+1=2 �  m;j�1=2

�
+ �t;j m;j

=
1

2
�s;j

NX
n=1

 n;j wn +Qj : (2.87)

The procedure is to guess the scalar ux for the scattering source, then lump the

scattering source and �xed-source together on the right hand side. Beginning at the

left boundary, for instance, a transport sweep is made to the right, one cell at a

time, for particles owing to the right. Equations 2.87 and 2.79 are solved for the

exiting ux. Given the incoming ux, the exiting ux from the �rst cell provides the

incoming ux for the next cell. The procedure is repeated for each cell, marching

to the right boundary. Then a transport sweep is made from right to left, where

the equations are solved for the exiting left-going ux. Upon returning to the left

boundary, an updated scalar ux is available for each cell. Substituting the updated

scalar ux into the scattering source, the transport sweep is performed again. The
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whole sweep (back and forth) is repeated until the uxes converge to within some

speci�ed criterion.

Criticality Method of Solution

Solving the discretized criticality transport equation requires more work. Guesses

are made for the scattering source as well as for the �ssion source and the eigenvalue.

Just as in the �xed-source solution, the ux is converged for the scattering source.

This allows for updating the �ssion source. Then all the uxes are normalized to the

�ssion source. Again, the uxes are converged upon the scattering source, at which

time the �ssion source is updated. Thus, there is a hierarchy of iterations. The

iterations that converge the scattering source are called inner iterations and those

that converge the �ssion source are called outer iterations.

Solving the Discretized Di�usion Equation

For �xed-source problems, solving the discretized di�usion equation is similar to

solving the discretized transport equation. However, the resulting equations are not

explicitly dependent upon angle like the SN equations. They form a tridiagonal sys-

tem that can be explicitly solved by matrix methods, such as Gaussian Elimination,

instead of iterating with transport sweeps. For criticality problems, the tridiagonal

system must be solved repeatedly until the �ssion source converges. That is, there

are only \outer" iterations in a criticality di�usion calculation. The explicit solving

of the tridiagonal matrix replaces the criticality transport \inner" iterations.

2.2.2 Monte Carlo Method

The Monte Carlo Method is based upon an entirely di�erent model than deter-

ministic methods. Instead of solving equations that describe an in�nite number of
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particles, Monte Carlo simulates enough individual particles to statistically describe

the actual number of particles. Typically, thousands or millions of simulated particles

represent an actual number of particles on the order of 108 to 1016.

The relation between �xed-source and criticality calculations in Monte Carlo is

similar to the relation in deterministic calculations. Each \outer iteration" consists

of an entire �xed-source calculation.

Sampling from a Probability Density Function

Analog Monte Carlo is conceptually the simplest form of Monte Carlo. Analog

Monte Carlo is direct, explicit representation of particles. We consider analog Monte

Carlo for a �xed-source calculation. The foundation of Monte Carlo simulation

is sampling from probability density functions (pdf). Each event that a particle

undergoes is randomly sampled from the appropriate pdf. Therefore, the life of a

particle is a sequence of random events.

Suppose a probability density function (pdf) is p(y) de�ned on a�y�b. The pdf

must be positive or zero over the interval, so that

p(y) dy = the probability that y lies between y and dy, (2.88)

and the pdf is normalized over the range a�y�b,

Z b

a
p(y) dy = 1 : (2.89)

We see then that

Z y2

y1
p(y) dy = the probability that y lies between y1 and y2. (2.90)

We de�ne the cumulative distribution function (cdf), P (x), as

P (x) =
Z x

a
p(y) dy (2.91)

= the probability that y lies between a and x, (2.92)
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so that

P (a) = 0 ; (2.93)

P (b) = 1 : (2.94)

Given that we have available a pseudorandom number, �, between 0 and 1, we

can sample x from the cdf as follows:

� = P (x) =
Z x

a
p(y) dy : (2.95)

If x is not easily tractable from Equation 2.95, one may need to resort to rejection

techniques [Ham64][Car75][Kal86]. Rejection techniques may require many sampled

�'s before an x is found.

The Life of a Monte Carlo Particle

Let us traverse the lifeline of a Monte Carlo �xed-source particle. First, we must

sample the source. In one-dimensional slab geometry, suppose the source is isotropic

and uniform between x=3.5 and x=7.0 cm. The pdf for its location is

p(x) =
1

6:0� 3:5
; 3:5 � x � 6:0 ; (2.96)

and the cdf is

P (x) =

Z x

3:5

1

6:0� 3:5
dy (2.97)

=
x� 3:5

6:0 � 3:5
: (2.98)

Drawing a random number, �, setting it equal to P (x), and solving for x, we have

x = (6:0� 3:5)� + 3:5 : (2.99)

We sample its isotropic direction cosine, �, from a cdf obtained similarly as before

� = �1 + 2� : (2.100)
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Now that we know the particle's initial location and direction, we must determine

how far it will travel to its �rst (next) collision. In order to determine the pdf

for this event, we consider the transport equation without scattering for a particle

traveling along the determined direction. We may, with no loss of generality, consider

a coordinate system along the direction of travel, and set �=1. Therefore, we have

d (x)

dx
+ �t (x) = 0 ;  (0) = 1 : (2.101)

The solution is

 (x) = e��tx ; (2.102)

such that the collision rate, and the pdf, is

�t (x) = �te
��tx : (2.103)

The cdf for traveling a distance d is

P (d) =

Z d

0

�te
��tx dx : (2.104)

Drawing a random number, �, setting it equal to P (d), we solve for d, obtaining,

d = �
1

�t
ln(1� �) ; (2.105)

or, since 1-� is distributed equivalently to �,

d = �
1

�t

ln(�) : (2.106)

After transporting the simulated Monte Carlo particle to its collision site, we use

the cross sections to determine what happens to the particle. Assume, for simplicity,

that we have only absorption and isotropic scattering, so that the total cross section

is

�t = �s + �a : (2.107)
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With probability

ps =
�s

�t

; (2.108)

the particle scatters, and with probability 1-ps, it is absorbed. The particle continues

its random walk until its death, through absorption or leakage out the system.

Implicit capture is a non-analog variance reduction technique that does not allow

the particle to be absorbed. Instead, the particles are assigned a weight (initially

one) and, at every collision, the weight is reduced, such that only ps of the weight

continues. If the system is highly scattering, the weight may become too low to

justify the computer time spent on it. Low weight particles are terminated by an

unbiased technique called Russian Roulette [Car75][Spa69].

Obtaining Monte Carlo Results

Information is weaned from the Monte Carlo method by running thousands or

millions of particles and accumulating random variable data of interest. For instance,

one may be interested in the ux in a region of the system, or the current across a

surface, or leakage out a boundary, etc. One may accumulate random variable data,

say gn, for events n=1,: : :N , where N is large, and build an average:

�g =
1

N

NX
n=1

gn ; (2.109)

where the average is an estimate of the true value g. Suppose the probability density

function of g is f(g) and gi is sampled from f(g). Then �g is an unbiased estimator

of g if its expected value is g [Lew84]:

E[�g] = E[
1

N

NX
n=1

gn] (2.110)

=
1

N

NX
n=1

E[gn] (2.111)

= E[g] ; (2.112)
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where

E[g] =
Z
1

�1

gf(g) dg ; (2.113)

and

E[gi] = E[g] ; (2.114)

since gn is sampled from f(g).

According to the Central Limit Theorem [Kal86][Spa69][Car75][Lew84], �g ap-

proaches a Gaussian, or normal, distribution, such that we can build a con�dence

interval from �g. A con�dence interval is a range of values that contains, with prob-

ability p, the true value:

[�g � tp;N�1s�g ; �g + tp;N�1s�g] ; (2.115)

where

s�g = estimate of the true standard deviation, ��g,

of the mean, and (2.116)

tp = Student's t-percentile for con�dence level p

and N{1 degrees of freedom. (2.117)

The sample standard deviation of the mean is obtained from the sample standard

deviation of the population with the following relation:

s�g =
sgp
N

; (2.118)

where the sample standard deviation is [Lew84]

sg =

s
N

N � 1

 
1

N

NX
n=1

gn � �g

!1=2

: (2.119)

The Central Limit Theorem states that �g approaches a normal distribution as N!1.

However, for �nite N , the distribution is not exactly normal. To build con�dence
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intervals, the departure from a normal distribution is accounted for by the Student's

t-percentile [Stu08][Ait57]. The Student's t-percentile multiplies the estimated stan-

dard deviation and gives a con�dence interval, in Equation 2.115, at the p con�dence

level and for N{1 degrees of freedom.

The collision estimator for the scalar ux in a volume V is

�c =
1

V �t

1

N

NX
n=1

wn ; (2.120)

where wn is the total collided weight for the nth history. The collision ux estimator

is based on the expression for the average number of collisions per unit time in volume

V [Lew84]:

�c = V �t� : (2.121)

Monte Carlo Criticality Calculations

Just like in deterministic calculations, Monte Carlo criticality calculations have

\outer" iterations, each one consisting of a �xed-source calculation. In Monte Carlo,

the outer iterations are called cycles. The typical criticality procedure is to make an

initial �ssion source guess and run enough cycles to converge the source. These cycles

are called the inactive cycles, or settling cycles. The di�erence between determinis-

tic and Monte Carlo criticality calculations is that once the deterministic source is

converged the calculation is �nished, whereas, Monte Carlo data accumulation can

begin only after the Monte Carlo source is converged. The cycles after the source is

converged are called active cycles. Deciding that the source is converged and active

cycles may begin is not an easy, well-de�ned task. It requires experience, knowledge

of the system and quality of the initial source guess, and luck.

During a cycle, the particle tracks determine the initial location of the �ssion

source particles for the next cycle. If, at a collision, a �ssion event occurs, and a
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�ssion particle is deemed to be born, then its position is banked (stored) until the

next cycle. At a collision, the �ssion weight, based upon the collision ux estimator,

is

�ssion weight = wn

��f

�t

: (2.122)

Although there are other ways, the typical method involves dividing the �ssion weight

by the old (currently available) keff . Thus, at each collision,

 =
wn

keff

��f

�t

(2.123)

�ssion source particles are produced for the next cycle. For example, if =0.7, a

source particle is produced with probability 0.7; or if =1.2, one particle is produced

with probability 0.8, and two particles are produced with probability 0.2. The result

of scaling the �ssion weight by keff is that each cycle has roughly the same number

of histories. With cycles having the same number of histories, computational di�-

culties of an increasing (problems with storage) or decaying (no particles!) source

are eliminated. However, the estimate of the scaled �ssion weight is biased, because

both the numerator and denominator are random variables, and the ratio of random

number averages is not equal to the average of the ratios [Elp85]. The bias is usually

insigni�cant because it is inversely proportional to the number of histories per cycle

[Gas75][Bow83][Bri86][Gel90][Gel91][Gel94].

We use three keff estimators [Lew84]: collision, absorption, and track length.

Contributions to the collision estimator are made at every collision, so that the

collision keff estimate at each cycle is

kcollision =
NX
n=1

MnX
mn=1

wmn

��f

�t

; (2.124)

where there are N histories in the cycle and Mn collisions in the nth history. Con-

tributions to the absorption estimator are made at every absorption, so that, for N
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histories, the cycle absorption keff estimate is

kabsorption =
NX
n=1

wn

��f

�a

: (2.125)

The cycle track length keff estimator is accumulated over distances traveled, not at

particular points. It is

ktrack length =
NX
n=1

MnX
mn=1

`mn
wmn

��f

�t

; (2.126)

whereMn is the number of track length segments, `mn
, in the nth history. The cycle

keff estimators are averaged over the active cycles to give an average keff estimate

for each estimator type,

�k type =
1

N

NX
n=1

ktype ; (2.127)

where \type" is collision, absorption, or track length.

Assuming a limited amount of computer resources, there are optimal values of the

number of histories per cycle and number of active cycles. The number of histories

per cycle should be large enough to diminish the bias in the keff estimate, but not

so large that only a small number of cycles can be run. Small numbers of cycles

may result in large estimated variances in keff , and, hence, meaningless con�dence

intervals. Conversely, too many cycles may reduce the estimated variance enough

such that the bias is no longer negligible [Gel94].

Determining the number of cycles to skip (the number of inactive cycles) is not

a trivial task. It depends on the quality of the initial �ssion source guess, the domi-

nance ratio of the system, and the computational parameters (and model). Usually,

it is di�cult to know for sure if the source is converged. Section 2.3 discusses com-

putational di�culties and this thesis addresses accelerating source convergence and

decreasing the number of necessary inactive cycles.
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2.3 Calculational Di�culties

Monte Carlo criticality calculations sometimes have di�culties that manifest

themselves in inaccurate results or unacceptably large computer times to achieve

accurate results. These di�culties may originate from the actual physical system

being modeled, or from computational situations, or both. In this section, we dis-

cuss sampling and the dominance ratio of the system. Generally, if a problem is

inadequately sampled, or if the dominance ratio is close to unity, there will be com-

putational di�culties. The discussion regarding the dominance ratio applies equally

to deterministic criticality calculations.

2.3.1 Sampling Di�culties

When parts of phase space are not sampled adequately, the solution is likely to be

inaccurate. Such an inaccuracy is considered a bias due to an improper model. The

best example of this sampling di�culty is G. Elliott Whitesides' \keff of the world"

problem [Whi71]. Whitesides used a Monte Carlo code to obtain keff for a 9� 9� 9

array of plutonium spheres. All the spheres were identical with radii of about 4 cm

and separated by 60 cm. The entire array was surrounded by a water reector. This

array is a loosely-coupled, subcritical system with keff � 0:93. Whitesides found

keff as about 0.93 with 300 histories per cycle. He undoubtedly did not obtain the

correct �ssion source shape, because the spheres are very independent and there were

not even enough histories per cycle to have one particle in each sphere! However,

since this problem is similar to a homogeneous, in�nite medium, the value of keff

is not highly dependent upon where the particles are located. When there is little

communication between the spheres, the keff of the system is about the keff of an

individual sphere. Indeed, Whitesides obtained the correct keff .
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However, when Whitesides replaced the center sphere of the model with a larger,

critical sphere, he obtained what he called the \keff of the world" problem. The name

comes from the fact that the world is about critical since it has critical reactors, but

if you were not near a critical reactor, it would be di�cult to calculate the critical

keff . After 200 active cycles [Dic76], his Monte Carlo estimate of keff was about

the same as before. With so few particles, the hot center sphere was not detected.

In this problem, the �ssion source shape is very important. It is highly peaked at

the hot center sphere{very di�erent from a typical initial at source guess. Once

the particles can \see" the hot center sphere, the Monte Carlo keff estimate begins

drifting upward toward unity. In addition to the poor sampling in this problem, the

system has a high dominance ratio, resulting in slow convergence.

2.3.2 Dominance Ratio

The dominance ratio is the ratio of the second highest eigenvalue to the domi-

nant eigenvalue, keff . In a source (or power) iteration method, the dominance ratio

dictates the rate of the slowest error decay, that of the lowest order error mode.

When the dominance ratio is near one, the low order error decays very slowly, thus

requiring many iterations for convergence.

Rate of Convergence for High Dominance Ratios

To demonstrate the relevance of the dominance ratio in source iteration, we in-

vestigate its e�ect on the rate of convergence. We consider the transport equation,

T = S +
1

k
�F ; (2.128)
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where

T = 
 � 5 (r; E;
) + �t(r; E) (r; E;
) ; (2.129)

S =
Z Z

�s(r;

0 �
; E 0! E) (r; E 0;
0) d
0 dE0 ; (2.130)

F =
Z Z

��f(r; E
0) (r; E 0;
0) d
0 dE0 : (2.131)

We manipulate Equation 2.128 as follows,

(T� S) =
1

k
�F (2.132)

 =
1

k
(T� S)�1�F ; (2.133)

and we operate on both sides by F, obtaining an analytic integral transport equation,

F =
1

k
F(T� S)�1�F : (2.134)

Equivalently,

f =
1

k
Lf ; (2.135)

where

f = f(r) = F = �ssion source ; (2.136)

L = F(T� S)�1� = integral �ssion operator : (2.137)

The integral �ssion operator is represented in discrete space by the �ssion matrix L̂.

The Source Iteration method is represented by introducing iteration indices to

Equation 2.135,

f (i+1=2) =
1

k(i)
Lf (i) ; (2.138)

f (i+1) = f (i+1=2) ; (2.139)

k(i+1) =

R
Lf (i)drR
f (i)dr

= k(i)
R
f (i+1=2)drR
f (i)dr

: (2.140)
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This satis�es

f (n) =
n�1Y
i=0

1

k(i)
Lnf (0) : (2.141)

The integral �ssion operator L has distinct eigenvalue solutions,

fm =
1

km
Lfm ; k = k1 > k2 > k3 > � � � : (2.142)

Suppose the initial source guess for the source iteration, Equations 2.138 to 2.140,

is a linear combination of the distinct solution eigenvectors [Lew84],

f (0) =
X
`

�`f` : (2.143)

Then, from Equation 2.142,

Lnf (0) =
X
`

�`k
n
` f` = �1k

n
1f1 + �2k

n
2f2 +

X
`>2

�`k
n
` f` : (2.144)

We see see that as n!1, k(n) converges to the dominant eigenvalue,

k(n+1) =

R
(�1k

n+1
1 f1 +

P
`>1 �`k

n+1
` f`)drR

(�1kn1f1 +
P

`>1 �`k
n
` f`)dr

(2.145)

=
kn+11

R �
�1f1 +

P
`>1 �`

�
k`
k1

�n+1
f`

�
dr

kn1
R �
�1f1 +

P
`>1 �`

�
k`
k1

�n
f`
�
dr

(2.146)

! k1 as n!1 : (2.147)

Also, the �ssion source converges to the dominant eigenfunction,

�
1

k1
L

�n
f (0) = �1f1 + �2 (�)

n
f2 +

X
`>2

�`

 
k`

k1

!n
f` (2.148)

! �1f1 as n!1 ; (2.149)

where

� =
k2

k1
(2.150)
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is the dominance ratio. Reducing an error of order 1 in Equation 2.148 to order

�� 1 requires

N =
log �

log �
(2.151)

iterations. For example, reducing an error by three orders of magnitude in a system

with dominance ratio 0.99 requires 688 iterations.

False Convergence

With a dominance ratio near unity, the source iteration method converges so

slowly that it may appear to be converged, when in fact it really is not. A typ-

ical measure of convergence is the vector norm{say the `
1

norm, the maximum

value{of the di�erence between two successive �ssion source iterates. Then, from

Equations 2.148 and 2.149, the apparent error at iteration n, an, is

an = f (n) � f (n�1) (2.152)

= �n�1(�� 1)�2f2 +
X
`>2

2
4
 
k`

k1

!(n)

�
 
k`

k1

!(n�1)
3
5�`f` ; (2.153)

whereas the real error at iteration n, rn, is

rn = �1f1 � f (n) = ��n�2f2 �
X
`>2

 
k`

k1

!n

�`f` : (2.154)

Considering only the leading terms of rn and an and taking the vector norms, we

see that, for dominance ratios near unity, the real error may be signi�cantly greater

than the apparent error:

jjrnjj
jjanjj

=
�

1� �
� 1 for 1� �� 1 : (2.155)

Two types of systems that tend to have dominance ratios near unity are large

thermal nuclear reactors and isolated arrays of barrels of nuclear waste. We shall

demonstrate how the dominance ratio approaches unity as a reactor becomes larger,

and as elements of an array are increasingly separated.
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Large Thermal Reactors

The dominance ratio is an indicator of the neutron communication between dis-

tant regions of the systems: the higher the dominance ratio, the weaker the commu-

nication. In general geometry, the di�usion equation for a homogeneous multiplying

medium, V , with zero scalar ux at the extrapolated boundary �V is

�D5
2 �(r) + �a�(r) =

��f

k
�(r) ; r 2 V ; (2.156)

�(r) = 0 ; r 2 �V ; (2.157)

where

D =
1

3�tr

= di�usion coe�cient ; (2.158)

�tr = �t � ��0�s = macroscopic transport cross section ; (2.159)

��0 = average scattering angle cosine : (2.160)

Let us consider, as a solution of Equation 2.156, the solution  n(r) of the homo-

geneous di�erential equation [Dud76]

5
2 n(r) +B2

n n(r) = 0 ; r 2 V ; (2.161)

 n(r) = 0 ; r 2 �V ; (2.162)

where the eigenvalues are arranged as B1 < B2 < B3 < � � �, and the eigenvectors are

orthonormal:
Z
 n(r) m(r)d

3r = �nm : (2.163)

Comparing Equations 2.162 and 2.157, we observe that  n(r) satis�es the boundary

condition of the di�usion equation, Equation 2.156, and, upon substitution, becomes

�D5
2  n(r) + �a n(r) =

��f

kn
 n(r) : (2.164)
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From Equation 2.161, we see that

�D5
2  n(r) = DB2

n n(r) ; (2.165)

so Equation 2.164 becomes

DB2
n n(r) + �a n(r) =

��f

kn
 n(r) : (2.166)

From Equation 2.166 we have that the k-eigenvalues are

kn =
��f

DB2
n + �a

: (2.167)

The two largest kn's occur for the two smallest bucklings, B2
n (the eigenvalues of the

homogeneous di�erential equation). Therefore, the dominance ratio � is

� =
k2

k1
=

�a +DB2
1

�a +DB2
2

: (2.168)

For a one-dimensional homogeneous slab of extrapolated width L, the eigenfunc-

tions of the homogeneous di�erential equation are [Dud76]

 n(x) = cosBnx ; (2.169)

with corresponding eigenvalues

B2
n =

�
n�

L

�2

: (2.170)

Substituting these homogeneous equation eigenvalues (bucklings) into the general

geometry expression for the dominance ratio, Equation 2.168, we obtain

� =
�a +D

�
�
L

�2

�a +D
�
2�
L

�2 =
L2�a +D�2

L2�a +D4�2
: (2.171)

Suppose �t = 1:0, �a = 0:7 (including �ssion), �s = 0:3 (isotropic scattering),

and ��f = 0:8. Then Figure 2.4 shows, as the slab width increases, how keff increases

toward k
1

and how the dominance ratio asymptotically increases toward unity.
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Figure 2.4: Di�usion theory expressions of the dominance ratio and keff show how
keff approaches k

1
and how the dominance ratio approaches unity as

the homogeneous slab width increases.

Arrays of Isolated Fissionable Materials

Another type of system that typically has a dominance ratio near unity is an ar-

ray of components, such as separated cans of nuclear waste. Using a one-dimensional

discrete ordinates code, we consider the e�ects of increasingly separating array com-

ponents on the dominance ratio. Consider two identical 2 cm slabs of �ssionable

material, each with �t = 1:0, �s = 0:7 (isotropic scattering), and ��f = 0:8. Fig-

ure 2.5 shows that as the slabs are separated by an increasing width of scattering

material, communication weakens, the dominance ratio approaches unity, and (in

this case) keff decreases. The very high dominance ratio problems proved to be

di�cult for the code. When the dominance ratio is near one, the �rst and second

eigenvalues are nearly the same. In this case, the �rst two eigenstates become less

distinct, and the code may try to converge to some linear combination of the �rst

two eigenstates.
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Figure 2.5: Several deterministic discrete-ordinates calculations show that as two
slabs are separated by an increasing width of scattering material, keff
approaches that of a single slab and the dominance ratio approaches
unity.

2.4 The Fission Matrix

The �ssion matrix, L̂, may be estimated in di�erent ways, for instance, by a

Monte Carlo calculation, a set of di�usion calculations, or a set of discrete-ordinates

transport calculations.

A �ssion matrix obtained from a Monte Carlo calculation is merely a matter of

bookkeeping. When a �ssion source particle is born, its cell of origin is logged, say,

cell j. After transport, suppose this particle produces a subsequent �ssion source

particle in cell i. This production would be accumulated for element (i; j). After

all the particles in the cycle are completed, each element is divided by the source in

cell j, such that each element (i; j) is the probability that a particle born in cell j

produces a subsequent �ssion source particle in cell i,

L̂ij =
�ssion weight produced in i due to a source in j

source in j
: (2.172)
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The numerator of L̂ij does not directly contain source normalization. It is the �ssion

weight from which source neutrons are sampled, not the actual simulated particles.

Therefore, an element (i; j) of the �ssion matrix may have a nonzero contribution,

but because of sampling, no simulated �ssion neutrons are actually produced in cell

i. The �ssion weight is equivalent to the incremental contributions made to the keff

estimator. Succinctly, then, the numerators of the �ssion matrix elements are the

keff estimates in cell i due to a particle originating in cell j. Thus, we may have as

many di�erent types of �ssion matrices as we have keff estimator types. We may

have a collision �ssion matrix, an absorption �ssion matrix, and a track length �ssion

matrix.

Accumulating Monte Carlo data for a single cycle produces a cycle �ssion ma-

trix. From the cycle �ssion matrix comes the dominant cycle eigenvector and cycle

eigenvalue. One may obtain an average cycle eigenvalue over many cycles. The

problem with the cycle �ssion matrix is that it is based only upon the number of

histories per cycle. The number of histories per cycle may be enough for theM cells

in the modeled system, but not enough for good statistics in the M2 elements of

the �ssion matrix. Additionally, the bias in the �ssion matrix elements, and hence

the eigenvalue, is more prevalent when the number of histories is small. The bias is

a manifestation of each �ssion matrix element being the ratio of the average of the

numerator and the average of the denominator. Generally, the average of a ratio is

not equal to the ratio of the average numerator to the average denominator [Elp85].

Experience has shown that this bias is usually positive, that is, the cycle �ssion

matrix dominant eigenvalue is higher than the true eigenvalue.

The cumulative �ssion matrix diminishes the bias in its elements more so than

does the cycle �ssion matrix. Instead of accumulating numerator and denominator
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data over just a single cycle, the data are accumulated over all the cycles up to that

point. The better statistics in the numerator and denominator result in reduced

bias in the �ssion matrix elements. Even if the �ssion source is not converged, the

data accumulated for the �ssion matrix is expected to be accurate since the �ssion

matrix elements are probabilities. The validity of this statement is diminished when

the �ssion source is not adequately sampled. The disadvantage of the eigenvalue of

the cumulative �ssion matrix is that it is di�cult to estimate its error in a simple,

traditional manner. Eigenvalues from successive cycles are not independent. An

attempt to propagate the errors through the source iteration determination of the

dominant eigenstate seem cumbersome. However, some propagated error estimates

have been proposed [Kap58].

The �ssion matrix is also deterministically obtainable. Instead of bookkeeping,

though, this approach requires a separate �xed source calculation for each cell in

the system. For a single calculation, a unit source is placed in one cell. If the

calculation is a cell-edge di�usion calculation, it may require distributing the source

between two cell-edges. Upon completion, there is a system-wide response to that

unit source in the one cell. Scaled by the �ssion cross section, this response provides

one column of the �ssion matrix. Then the calculation is repeated for each cell in

the system. In this thesis, we use di�usion calculations instead of discrete-ordinates

transport calculations, because our ultimate intended use is acceleration and the

di�usion calculations are faster. Also, in practice, most criticality problems tend to

have fairly isotropic scattering.

Because the �ssion matrix resides on a spatially discretized system, it su�ers from

a discretization error. For example, with vacuum boundary conditions, the �ssion

matrix's at �ssion source in the boundary cell overestimates the leakage. Therefore,


